
A Symbolic Execution-Based Approach to Model
Transformation Verification using Structural

Contracts

Bentley James Oakes

McGill University

bentley.oakes@mail.mcgill.ca

September 4, 2018



1 Introduction

2 Formalization of DSLTrans

3 Transformation Verification using Contracts

4 SyVOLT Tool

5 Conclusion

B. Oakes Model Trans. Verification 2 / 37



Outline

1 Introduction

2 Formalization of DSLTrans

3 Transformation Verification using Contracts

4 SyVOLT Tool

5 Conclusion

B. Oakes Model Trans. Verification 3 / 37



Motivation

Model-driven engineering is crucial for creating and understanding complex
systems

Goal: Build a model of a system in the most appropriate language(s) for multiple
stakeholders

Example: A model for simulation/code synthesis/safety analysis of a nuclear
reactor (Van Mierlo 2017)

Concepts include tanks, pipes, water level, pressure
Human-readable, activities possible through model transformation

B. Oakes Model Trans. Verification 4 / 37



Model Transformations

Problem: Want to have a structured and understandable way to
modify/translate/simulate models

Solution: Use model transformations, which are composed of rules to manipulate
model elements

Rules are executed in a particular schedule, and match elements in the input
model to produce elements in the output model

Issue: Difficult to understand interactions of rules from examining a transformation

B. Oakes Model Trans. Verification 5 / 37



Contract Proving Technique

Problem: Want to understand how an input model to the transformation relates
to the corresponding output model

Solution: Verify pre-/post-condition patterns (structural contracts) which
guarantee relations and traceability between elements if the contract is satisfied

“A Family with a father, mother, son and
daughter should always produce two Man
and two Woman elements connected to a
Community.”

Result: Combinations of rules where the contract is satisfied, and combinations
where the contract is not satisfied

Allows the user to better understand the behaviour of the transformation

B. Oakes Model Trans. Verification 6 / 37



Research Questions

Five research questions answered by the thesis and this presentation:

Formalization of DSLTrans transformation language

RQ1) How can the DSLTrans language be precisely formalized?

Transformation verification using contracts

RQ2) How can the infinite execution possibilities of a DSLTrans transformation
be represented in an explicit finite set?

RQ3)
a) How can contracts be proved to be satisfied or non-satisfied on these representations?
b) When not satisfied, how do the counter-examples relate to the transformation?

Development of the SyVOLT proving tool

RQ4) What is the design and work-flow of a contract verification tool?

RQ5) What are techniques for improving the scalability of the verification tool?

B. Oakes Model Trans. Verification 7 / 37



Outline

1 Introduction

2 Formalization of DSLTrans

3 Transformation Verification using Contracts

4 SyVOLT Tool

5 Conclusion

B. Oakes Model Trans. Verification 8 / 37



DSLTrans Overview

DSLTrans transformation language was conceived by Barroca et al. (2011), so
not a contribution of the thesis

Intent was to create a language of limited expressiveness, so that by construction
each transformation terminates and is confluent (rules cannot conflict)

Rules in DSLTrans are scheduled in layers. Rules are fully applied in one layer
before moving on

Layered nature crucial for understandability and analysability

Rules provide traceability links, to record how elements were built

B. Oakes Model Trans. Verification 9 / 37



DSLTrans Semantics

Problem: Not all constructs of DSLTrans were formally specified
Behaviour defined by implementation

Solution: Describe semantics of DSLTrans in a widely-used model transformation
formalization

Double-pushout approach answers RQ1) How can the DSLTrans language be
precisely formalized?

Reasons for selecting the double-pushout approach:
Provides elegant (and most appropriate) explanation
Aligns semantics with other transformation languages
Provides rigour for DSLTrans usability and analysability

B. Oakes Model Trans. Verification 10 / 37



Rule Matcher and Rewriter

The double-pushout approach divides the application of a rule into the matching
and rewriting stages

Consider a rule which:
Matches on a model with a diamond and a circle
Replaces the circle with a rounded square

Pre-condition/Matcher / LHS Post-condition/Rewriter / RHS

B. Oakes Model Trans. Verification 11 / 37



Double-Pushout Approach

Arrows are morphisms between components, providing mappings of nodes and
edges

Element creation is performed through matching and the union operator, termed
push-outs

B. Oakes Model Trans. Verification 12 / 37



Mass Productions

Double-pushout approach allows the creation of elegant mass productions

Technique: Combine the matchers and rewriters of multiple rules

p1 : L1
l1←− K1

r1−→ R1 . . . pk : Lk
lk←− Kk

rk−→ Rk

L = L1 + . . . + Lk K = K1 + . . . + Kk R = R1 + . . . + Rk

in1
L

in1
K

in1
R inkL

inkK

inkR

l r

Allows for all rules in a layer to be applied at once, ensuring they cannot interfere
with each other

B. Oakes Model Trans. Verification 13 / 37



Formalization Contributions

Precise semantics provided for all DSLTrans constructs in the double-pushout
approach

Examination of termination and confluence properties

B. Oakes Model Trans. Verification 14 / 37



Outline

1 Introduction

2 Formalization of DSLTrans

3 Transformation Verification using Contracts

4 SyVOLT Tool

5 Conclusion

B. Oakes Model Trans. Verification 15 / 37



Contract Proving Results

Verification results indicate which combinations of rules (path conditions) satisfy
or do not satisfy each contract

Allows the user to better understand transformation behaviour

Contract:

“A School will always
produce an OrdinaryFacility”

Reality: Contract should fail, as a rule exists in the
transformation such that SpecialFacilities can also
be produced

Verification results:

a) Name: Neg_SchoolOrdFac

Num Succeeded Path Conditions: 6

Num Failed Path Conditions: 3

b) Explaining contract result:

Good rules: (Rules in success set and not failure set)

dfacilities...OrdinaryFacilityPerson

Bad rules: (Rules common to all in failure set)

dfacilities...SpecialFacilityPerson

Answers RQ3 b) When not satisfied, how do the
counter-examples relate to the transformation?

B. Oakes Model Trans. Verification 16 / 37



Path Conditions

Contract proof is performed on path conditions, which represent valid
combinations of rule applications

Record element presence when rules apply

First step is to build the path conditions, then the second step is to match the
contract onto the path conditions

Example: This path condition represents the application of four rules, where each
rule has applied at least once

Through a formalized abstraction relation, this path condition represents an
infinite set of transformation executions

Abstracts over rule application multiplicity and element overlap

A set of path conditions answers RQ2: How can the infinite execution possibilities
of a DSLTrans transformation be represented in an explicit finite set?

B. Oakes Model Trans. Verification 17 / 37



Step 1 - Symbolic Execution

Path conditions are produced through a symbolic execution of the
transformation’s rules, layer-by-layer

Final set of path conditions represents
all valid transformation executions

Rules are classified depending on
combination with the path condition

Combining the rules and path condition
creates new path conditions

B. Oakes Model Trans. Verification 18 / 37



Step 2 - Contract Matching

After path condition generation, the elements in the contracts are matched
against the path conditions to determine contract satisfaction

Answers RQ3: a) How can contracts be proven to be sat

Issue: In path conditions, unknown whether rule elements overlap or not

Major contribution is the “split” morphism for matching contracts and path
conditions

Allows one contract element to match over multiple path condition elements

B. Oakes Model Trans. Verification 19 / 37



Contract Proving Contributions

Detailed procedure for building the set of path conditions

Technique for matching contracts onto path conditions to determine
counter-examples

Precise definition for validity of proof result
Results of proof on path conditions is related to proof on abstracted transformation
executions

B. Oakes Model Trans. Verification 20 / 37



Outline

1 Introduction

2 Formalization of DSLTrans

3 Transformation Verification using Contracts

4 SyVOLT Tool

5 Conclusion

B. Oakes Model Trans. Verification 21 / 37



SyVOLT Architecture

SyVOLT is a tool for contract verification of DSLTrans transformations
Major contribution of thesis is on efficiency and applicability to industrial-sized
transformations
FTG-PM presented answers RQ4) What is the design and work-flow of a contract
verification tool?

B. Oakes Model Trans. Verification 22 / 37



Efficiency Techniques

Thesis presents five case studies ranging from 7 rules to 46 rules

To improve the scalability of the tool, three efficiency techniques are presented:

Parallelization

Slicing

Pruning

Answers RQ5) What are techniques for improving the scalability of the verification
tool?

B. Oakes Model Trans. Verification 23 / 37



Parallelization

Idea: Employ multiple threads to speed up tool
Technique: Divide path condition generation and contract proving amongst
multiple threads
Results on the 32-core supercomputer for the largest case study of 46 rules:

B. Oakes Model Trans. Verification 24 / 37



Slicing

Idea: Instead of symbolically executing all rules, select the rules relevant to a
contract

Technique: Match elements from contract onto rules to find dependencies

Speed-up: 3.8x - 72.6x

Trade-off between generating all path conditions, and smaller set for one contract

Contract Name Rules Path Conds. Total Time (s)
Full 19 4916 59.18

CityCompany 8 43 0.30
CountryCity 6 10 0.13
SchoolOrdFac 5 17 0.17
DaughterMother 9 64 0.43

AssocCity 9 64 0.35
ChildSchool 5 17 0.17
FourMembers 9 64 0.43
MotherFather 9 64 0.45
ParentCompany 5 18 0.16
TownHallComm 11 184 0.86

B. Oakes Model Trans. Verification 25 / 37



Pruning

Idea: Remove invalid path conditions to decrease state space

Technique: Check if path conditions violate meta-model containment restrictions
Example: A meta-model requires that all Woman elements are contained in a
Community through a persons link
If a Woman element exists, but is not connected by a persons link, then that path
condition is invalid as it doesn’t represent a valid output model

Speed-up: 0.9x - 14.2x

Warning: Pruning can change contract satisfaction results
Counter-examples to a contract can be pruned away

B. Oakes Model Trans. Verification 26 / 37



SyVOLT Contributions

Development of an efficient and scalable contract verification tool

Detailed presentation of core algorithms and efficiency techniques, their
complexity, and advantages/disadvantages

Examination of multiple case studies (toy to industrial) with results of contract
proof

B. Oakes Model Trans. Verification 27 / 37



Outline

1 Introduction

2 Formalization of DSLTrans

3 Transformation Verification using Contracts

4 SyVOLT Tool

5 Conclusion

B. Oakes Model Trans. Verification 28 / 37



Conclusion

Thesis provides end-to-end approach to contract verification

Semantics provided for DSLTrans enables precise usage and verification for all
structures

Contract verification approach efficiently determines counter-examples to
contracts, offering insight into transformation behaviour

Algorithmic design and implementation of a contract prover, which is scalable to
industrial-sized transformations

B. Oakes Model Trans. Verification 29 / 37



Future Work

Investigate how symbolic execution and contract proving approach can be
transferred to other transformation languages

Explore assisting the user in systematically creating contracts to verify
transformations

Promote “contract-based design” of model transformations, with continuous verification

B. Oakes Model Trans. Verification 30 / 37



Thank You

Thank you for your time and attention

B. Oakes, C. Verbrugge, L. Lúcio,and H. Vangheluwe. Debugging of Model Transformations and Contracts
in SyVOLT. Submitted to the Debugging in Model-Driven Engineering (MDEbug 2018) workshop.

B. Oakes, L. Lúcio, C. Gomes, and H. Vangheluwe. Expressive Symbolic-Execution Contract Proving for the
DSLTrans Transformation Language. Technical Report SOCS-TR-2017.1, McGill University, 2017.

B. Oakes, J. Troya, L. Lúcio, and M. Wimmer. Full Contract Verification for ATL using Symbolic Execution.
Software and Systems Modeling, pages 1–35, 2016.

B. Oakes, J. Troya, L. Lúcio, and M. Wimmer. Fully Verifying Transformation Contracts for Declarative ATL.
In International Conference on Model Driven Engineering Languages and Systems, pages 256–265, 2015.

L. Lúcio, B. Oakes, C. Gomes, G. Selim, J. Dingel, J. Cordy, and H. Vangheluwe. SyVOLT: Full Model
Transformation Verification using Contracts. In International Conference on Model Driven Engineering
Languages and Systems, pages 24–27, 2015.

G. Selim, J. Cordy, J. Dingel, L. Lúcio, and B. Oakes. Finding and Fixing Bugs in Model Transformations
with Formal Verification: An Experience Report. In Proceedings of Analysis of Model Transformations
workshop at Model Driven Engineering Languages and Systems, pages 26–35, 2015.

L. Lúcio, B. Oakes, and H. Vangheluwe. A Technique for Symbolically Verifying Properties of Graph-based
Model Transformations. Technical Report SOCS-TR-2014.1, McGill University, 2014.

G. Selim, J. Cordy, J. Dingel, L. Lúcio, and B. Oakes. Specification and Verification of Graph-Based Model
Transformation Properties. In Proceedings of International Conference on Graph Transformation, pages
113–129, 2014.

B. Oakes Model Trans. Verification 31 / 37



Pushout Explanation

A B

C P

f

g f ′

g ′

P is a pushout over the morphisms
f : A→ B and g : A→ C defined by:

a pushout object P

the morphisms f ′ : B → P and
g ′ : C → P with f ′ ◦ g = g ′ ◦ f

Definition

Universal Property
For all objects X , morphisms h : B → X ,
k : C → X with k ◦ g = h ◦ f :
there is a unique morphism x : P → X
with x ◦ g ′ = h and x ◦ f ′ = k.

A B

C P

X

f

g f ′
h

g ′

k

x

B. Oakes Model Trans. Verification 32 / 37



Pushout Example

B. Oakes Model Trans. Verification 33 / 37



Double-Pushout Approach Example

B. Oakes Model Trans. Verification 34 / 37



Split Morphism

Issue: Need one pattern node to be matched to two target nodes

Requirements:

Pattern nodes are totally matched

One pattern node to multiple target nodes
Attributes must be matched

Edges must be one-to-one

B. Oakes Model Trans. Verification 35 / 37



Contract Matching

The issue is that we are representing rule application, but not all possible ways
rules can match over the same elements

This is prohibitively expensive to calculate explicitly

This structural information is discarded in the split morphism, allowing the
contract to “split” over the path condition, and consider the Family elements to
be unified

B. Oakes Model Trans. Verification 36 / 37



Contract Language Limitations

Contracts can only express very basic structural information
Constructs available: And, Or, If-Then, Not, pivots
Can’t represent universal operators (“for all element A’s, B’s must be attached”), or
temporal properties

Multiplicity is unintuitive

If a System element exists in the output model, then that System element should be
connected to a SystemMapping element, and not (always) connected to two

SystemMapping elements

Language not placed in formal logic (first-order, second-order) framework

Future work: Replace contract language with another, rather than improve

B. Oakes Model Trans. Verification 37 / 37


	Introduction
	Formalization of DSLTrans
	Transformation Verification using Contracts
	SyVOLT Tool
	Conclusion

